Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Cereb Cortex ; 34(1)2024 01 14.
Article En | MEDLINE | ID: mdl-37991276

Despite the prevalence of visuomotor transformations in our motor skills, their mechanisms remain incompletely understood, especially when imagery actions are considered such as mentally picking up a cup or pressing a button. Here, we used a stimulus-response task to directly compare the visuomotor transformation underlying overt and imagined button presses. Electroencephalographic activity was recorded while participants responded to highlights of the target button while ignoring the second, non-target button. Movement-related potentials (MRPs) and event-related desynchronization occurred for both overt movements and motor imagery (MI), with responses present even for non-target stimuli. Consistent with the activity accumulation model where visual stimuli are evaluated and transformed into the eventual motor response, the timing of MRPs matched the response time on individual trials. Activity-accumulation patterns were observed for MI, as well. Yet, unlike overt movements, MI-related MRPs were not lateralized, which appears to be a neural marker for the distinction between generating a mental image and transforming it into an overt action. Top-down response strategies governing this hemispheric specificity should be accounted for in future research on MI, including basic studies and medical practice.


Motor Cortex , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Motor Cortex/physiology , Imagination/physiology , Evoked Potentials/physiology , Electroencephalography/methods , Movement/physiology , Evoked Potentials, Motor/physiology
2.
Front Neurosci ; 17: 1202951, 2023.
Article En | MEDLINE | ID: mdl-37492407

Background: Motor Imagery (MI) is a well-known cognitive technique that utilizes the same neural circuits as voluntary movements. Therefore, MI practice is widely used in sport training and post-stroke rehabilitation. The suppression of the µ-rhythm in electroencephalogram (EEG) is a conventional marker of sensorimotor cortical activation during motor imagery. However, the role of somatosensory afferentation in mental imagery processes is not yet clear. In this study, we investigated the impact of functional electrical stimulation (FES) on µ-rhythm suppression during motor imagery. Methods: Thirteen healthy experienced participants were asked to imagine their right hand grasping, while a 30-channel EEG was recorded. FES was used to influence sensorimotor activation during motor imagery of the same hand. Results: We evaluated cortical activation by estimating the µ-rhythm suppression index, which was assessed in three experimental conditions: MI, MI + FES, and FES. Our findings shows that motor imagery enhanced by FES leads to a more prominent µ-rhythm suppression. Obtained results suggest a direct effect of peripheral electrical stimulation on cortical activation, especially when combined with motor imagery. Conclusion: This research sheds light on the potential benefits of integrating FES into motor imagery-based interventions to enhance cortical activation and holds promise for applications in neurorehabilitation.

3.
MethodsX ; 10: 102213, 2023.
Article En | MEDLINE | ID: mdl-37292240

Highly accurate visualization of the points of transcranial magnetic stimulation (TMS) application on the brain cortical surface could provide anatomy-specific analysis of TMS effects. TMS is widely used to activate cortical areas with high spatial resolution, and neuronavigation enables site-specific TMS of particular gyrus sites. Precise control of TMS application points is crucial in determining the stimulation effects. Here, we propose a method that gives an opportunity to visualize and analyze the stimulated cortical sites by processing multi-parameter data.•This method uses MRI data to create a participant's brain model for visualization. The MRI data is segmented to obtain a raw 3D model, which is further optimized in 3D modeling software.•A Python script running in Blender uses the TMS coil's orientation data and participant's brain 3D model to define and mark the cortical sites affected by the particular TMS pulse.•The Python script can be easily customized to visualize TMS points task-specifically.

4.
eNeuro ; 10(6)2023 Jun.
Article En | MEDLINE | ID: mdl-37263791

It is well known that both hand movements and mental representations of movement lead to event-related desynchronization (ERD) of the electroencephalogram (EEG) recorded over the corresponding cortical motor areas. However, the relationship between ERD in somatosensory cortical areas and mental representations of tactile sensations is not well understood. In this study, we employed EEG recordings in healthy humans to compare the effects of real and imagined vibrotactile stimulation of the right hand. Both real and imagined sensations produced contralateral ERD patterns, particularly in the µ-band and most significantly in the C3 region. Building on these results and the previous literature, we discuss the role of tactile imagery as part of the complex body image and the potential for using EEG patterns induced by tactile imagery as control signals in brain-computer interfaces (BCIs). Combining this approach with motor imagery (MI) could improve the performance of BCIs intended for rehabilitation of sensorimotor function after stroke and neural trauma.


Imagination , Motor Cortex , Humans , Imagination/physiology , Electroencephalography/methods , Hand/physiology , Movement/physiology , Motor Cortex/physiology
5.
Front Hum Neurosci ; 17: 1180056, 2023.
Article En | MEDLINE | ID: mdl-37213933

Action observation (AO) is widely used as a post-stroke therapy to activate sensorimotor circuits through the mirror neuron system. However, passive observation is often considered to be less effective and less interactive than goal-directed movement observation, leading to the suggestion that observation of goal-directed actions may have stronger therapeutic potential, as goal-directed AO has been shown to activate mechanisms for monitoring action errors. Some studies have also suggested the use of AO as a form of Brain-computer interface (BCI) feedback. In this study, we investigated the potential for observation of virtual hand movements within a P300-based BCI as a feedback system to activate the mirror neuron system. We also explored the role of feedback anticipation and estimation mechanisms during movement observation. Twenty healthy subjects participated in the study. We analyzed event-related desynchronization and synchronization (ERD/S) of sensorimotor EEG rhythms and Error-related potentials (ErrPs) during observation of virtual hand finger flexion presented as feedback in the P300-BCI loop and compared the dynamics of ERD/S and ErrPs during observation of correct feedback and errors. We also analyzed these EEG markers during passive AO under two conditions: when subjects anticipated the action demonstration and when the action was unexpected. A pre-action mu-ERD was found both before passive AO and during action anticipation within the BCI loop. Furthermore, a significant increase in beta-ERS was found during AO within incorrect BCI feedback trials. We suggest that the BCI feedback may exaggerate the passive-AO effect, as it engages feedback anticipation and estimation mechanisms as well as movement error monitoring simultaneously. The results of this study provide insights into the potential of P300-BCI with AO-feedback as a tool for neurorehabilitation.

6.
Front Neuroinform ; 17: 1301718, 2023.
Article En | MEDLINE | ID: mdl-38348138

The study presents a novel approach designed to detect time-continuous states in time-series data, called the State-Detecting Algorithm (SDA). The SDA operates on unlabeled data and detects optimal change-points among intrinsic functional states in time-series data based on an ensemble of Ward's hierarchical clustering with time-connectivity constraint. The algorithm chooses the best number of states and optimal state boundaries, maximizing clustering quality metrics. We also introduce a series of methods to estimate the performance and confidence of the SDA when the ground truth annotation is unavailable. These include information value analysis, paired statistical tests, and predictive modeling analysis. The SDA was validated on EEG recordings of Guhyasamaja meditation practice with a strict staged protocol performed by three experienced Buddhist practitioners in an ecological setup. The SDA used neurophysiological descriptors as inputs, including PSD, power indices, coherence, and PLV. Post-hoc analysis of the obtained EEG states revealed significant differences compared to the baseline and neighboring states. The SDA was found to be stable with respect to state order organization and showed poor clustering quality metrics and no statistical significance between states when applied to randomly shuffled epochs (i.e., surrogate subject data used as controls). The SDA can be considered a general data-driven approach that detects hidden functional states associated with the mental processes evolving during meditation or other ongoing mental and cognitive processes.

7.
Diagnostics (Basel) ; 12(11)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36359454

Currently, P300-BCIs are mostly used for spelling tasks, where the number of commands is equal to the number of stimuli that evoke event-related potentials (ERPs). Increasing this number slows down the BCI operation because each stimulus has to be presented several times for better classification. Furthermore, P300 spellers typically do not utilize potentially useful imagery-based approaches, such as the motor imagery successfully practiced in motor rehabilitation. Here, we tested a P300-BCI with a motor-imagery component. In this BCI, the number of commands was increased by adding mental strategies instead of increasing the number of targets. Our BCI had only two stimuli and four commands. The subjects either counted target appearances mentally or imagined hand movements toward the targets. In this design, the motor-imagery paradigm enacted a visuomotor transformation known to engage cortical and subcortical networks participating in motor control. The operation of these networks suffers in neurological conditions such as stroke, so we view this BCI as a potential tool for the rehabilitation of patients. As an initial step toward the development of this clinical method, sixteen healthy participants were tested. Consistent with our expectation that mental strategies would result in distinct EEG activities, ERPs were different depending on whether subjects counted stimuli or imagined movements. These differences were especially clear in the late ERP components localized in the frontal and centro-parietal regions. We conclude that (1) the P300 paradigm is suitable for enacting visuomotor transformations and (2) P300-based BCIs with multiple mental strategies could be used in applications where the number of possible outputs needs to be increased while keeping the number of targets constant. As such, our approach adds to both the development of versatile BCIs and clinical approaches to rehabilitation.

8.
Front Hum Neurosci ; 16: 973229, 2022.
Article En | MEDLINE | ID: mdl-36118966

The action observation networks (AON) (or the mirror neuron system) are the neural underpinnings of visuomotor integration and play an important role in motor control. Besides, one of the main functions of the human mirror neuron system is recognition of observed actions and the prediction of its outcome through the comparison with the internal mental motor representation. Previous studies focused on the human mirror neurons (MNs) activation during object-oriented movements observation, therefore intransitive movements observation effects on MNs activity remains relatively little-studied. Moreover, the dependence of MNs activation on the biomechanical characteristics of observed movement and their biological plausibility remained highly underexplored. In this study we proposed that naturalness of observed intransitive movement can modulate the MNs activity. Event-related desynchronization (ERD) of sensorimotor electroencephalography (EEG) rhythms, N400 event-related potentials (ERPs) component and corticospinal excitability were investigated in twenty healthy volunteers during observation of simple non-transitive finger flexion that might be either biomechanically natural or unnatural when finger wriggled out toward the dorsal side of palm. We showed that both natural and unnatural movements caused mu/beta-desynchronization, which gradually increased during the flexion phase and returned to baseline while observation of extension. Desynchronization of the mu-rhythm was significantly higher during observation of the natural movements. At the same time, beta-rhythm was not found to be sensitive to the action naturalness. Also, observation of unnatural movements caused an increased amplitude of the N400 component registered in the centro-parietal regions. We suggest that the sensitivity of N400 to intransitive action observation with no explicit semantic context might imply the broader role of N400 sources within AON. Surprisingly, no changes in corticospinal excitability were found. This lack of excitability modulation by action observation could be related with dependence of the M1 activity on the observed movement phase.

...